Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhu-Yan Zhang, Shan Gao,* Li-Hua Huo and Jing-Gui Zhao

Laboratory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.036$
$w R$ factor $=0.100$
Data-to-parameter ratio $=14.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Hydroxypyridinium-1-acetate monohydrate

In the betaine title compound, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{HOC}_{5} \mathrm{H}_{4} \mathrm{~N}^{+} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, 3-hydroxypyridinium-1-acetate interacts with the water molecule to form a two-dimensional hydrogen-bonded framework.

Comment

Pyridinioacetate, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}^{+}-\mathrm{CH}_{2} \mathrm{CO}_{2}{ }^{-}$, is a zwitterionic compound that yields a number of adducts with metal salts (Yang et al., 2003). Our studies have been concerned with the solid-state structure of hydroxy-substituted pyridinioacetate and directed toward the synthesis of metal salts (Gao, Huo et al., 2004; Gao, Zhang et al., 2004; Zhang et al., 2004a,b). 3-Hydroxypyridinium-1-acetic acid cocrystallizes with 1-carboxymethyl-3-hydroxypyridinium chloride (1/1) (Zhao et al., 2004), the cation interacting with the zwitterion.

In this paper, we report the structure of the zwitterionic title compound, (I). The $\mathrm{O} 1-\mathrm{C} 7$ and $\mathrm{O} 2-\mathrm{C} 7$ bond lengths are 1.2440 (16) \AA and 1.2375 (16) \AA, indicating electron delocalization (Table 1). The carboxylate group $\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 2$ is twisted out of the attached pyridine ring plane, the dihedral angle being 66.1 (3) ${ }^{\circ}$. The water molecule interacts with the O atoms of the hydroxy and carboxylate groups (Table 2), giving rise to a two-dimensional hydrogen-bonded framework (Fig. 2).

(I)

Experimental

Cadmium dinitrate tetrahydrate ($3.08 \mathrm{~g}, 10 \mathrm{mmol}$) and imidazole ($0.69 \mathrm{~g}, 10 \mathrm{mmol}$) were added to an aqueous solution of 1-carboxy-methyl-3-hydroxypyridinium chloride-3-hydroxypyridinium-1acetate $(1 / 1)(3.43 \mathrm{~g}, 10 \mathrm{mmol})$. The mixture was stirred for 0.5 h and then filtered. Colorless crystals of the title compound separated from the solution after several days. Analysis calculated for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}_{4}$: C 49.12, H 5.30, N 8.18\%; found: C 49.16, H 5.34, N 8.16\%.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O} \\
& M_{r}=171.15 \\
& \text { Orthorhombic, } P b c a \\
& a=8.8417(18) \AA \\
& b=12.081(2) \AA \\
& c=14.262(3) \AA \\
& V=1523.5(5) \AA \\
& Z=8 \\
& D_{x}=1.492 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Received 26 September 2005 Accepted 30 September 2005 Online 8 October 2005

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.962, T_{\text {max }}=0.982$
13670 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.100$
$S=1.03$
1742 reflections
118 parameters
H atoms treated by a mixture of independent and constrained refinement

1742 independent reflections 1459 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-10 \rightarrow 11$
$k=-15 \rightarrow 15$
$l=-18 \rightarrow 18$

$$
\left.\begin{array}{rl}
w= & 1 /[
\end{array} \sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0526 P)^{2}\right)
$$

References

Gao, S., Huo, L.-H., Zhang, Z.-Y., Kong, L.-L. \& Zhao, J.-G. (2004). Acta Cryst. E60, m679-m681.
Gao, S., Zhang, Z.-Y., Huo, L.-H., Zhao, J.-G., Sharifuddin, M. Z. \& Ng, S. W. (2004). Acta Cryst. E60, o1006-o1008.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA.
Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Yang, Y.-Y., Huang, Z.-Q., Chen, X.-M. \& Ng, S. W. (2003). Z. Anorg. Allg. Chem. 629, 1901-1903.
Zhang, Z.-Y., Gao, S., Huo, L.-H., Zhao, H., Zhao, J.-G. \& Ng, S. W. (2004a). Acta Cryst. E60, m544-m545.
Zhang, Z.-Y., Gao, S., Huo, L.-H., Zhao, H., Zhao, J.-G. \& Ng, S. W. (2004b). Acta Cryst. E60, m676-m678.
Zhao, H., Huo, L.-H., Gao, S., Zhang, Z.-Y., Zhao, J.-G. \& Ng, S. W. (2004). Acta Cryst. E60, o1501-1503.

The atom-numbering scheme and displacement ellipsoids at the 50% probability level. An intermolecular hydrogen bond is shown as a dashed line.

Figure 2
A plot of the hydrogen-bonding (dashed lines) network of (I). H atoms not involved in hydrogen bonding have been omitted.

Teachers of Heilongjiang Province (1054 G036) and Heilongjiang University for supporting this study.

References

Table 1
Selected geometric parameters ($\AA{ }^{\circ},^{\circ}$).

N1-C5	$1.3423(17)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.3847(18)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.3424(16)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.3890(18)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.4741(16)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.382(2)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.2440(16)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.368(2)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.2375(16)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.5392(18)$
$\mathrm{O} 3-\mathrm{C} 2$	$1.3348(16)$		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$120.27(11)$	$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3$	$124.77(12)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$119.64(12)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 6$	$118.89(11)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$	$112.88(10)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$118.75(12)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 6$	$114.52(11)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$119.13(12)$
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{O} 1$	$127.42(12)$	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	$121.85(11)$
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 6$	$117.97(11)$	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 6$	$119.09(11)$
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 1$	$116.48(12)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$120.34(13)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} W-\mathrm{H} 1 W 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.86(1)$	$1.86(1)$	$2.6934(14)$	$165(2)$
O1 $^{\mathrm{i}} W-\mathrm{H} 1 W 2 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.85(1)$	$1.85(1)$	$2.6980(15)$	$170(2)$
O3-H7 $\cdots \mathrm{O} 1 W$	$0.87(1)$	$1.70(1)$	$2.5627(15)$	$171(2)$

Symmetry codes: (i) $-x, y-\frac{1}{2},-z+\frac{3}{2}$; (ii) $-x+\frac{1}{2},-y+1, z+\frac{1}{2}$.
The H atoms attached to O atoms were located in a difference map and refined with $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distances restrained to 0.85 (1) and $1.39(1) \AA$, respectively; $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. All other H atoms were placed in calculated positions, with aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$ and aliphatic $\mathrm{C}-\mathrm{H}=0.97 \AA$, and were included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund of Remarkable

